Realizable lists on a class of nonnegative matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the convexity of the realizable set of eigenvalues for nonnegative symmetric matrices

Geometric properties of the set Rn of n–tuples of realizable spectra of nonnegative symmetric matrices, and the Soules set Sn introduced by McDonald and Neumann, are examined. It is established that S5 is properly contained in R5. Two interesting examples are presented which show that neither Rn nor Sn need be convex. It is proved that Rn and Sn are star convex and centered at (1, 1, . . . , 1).

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

On Nonnegative Factorization of Matrices

It is shown that a sufficient condition for a nonnegative real symmetric matrix to be completely positive is that the matrix is diagonally dominant.

متن کامل

On the existence of nonnegative solutions for a class of fractional boundary value problems

‎In this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎By applying Kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function‎. ‎Then the Arzela--Ascoli theorem is used to take $C^1$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2018

ISSN: 0024-3795

DOI: 10.1016/j.laa.2018.04.004